Tag Archives: physics education research

Disrupt This: My Challenge to Silicon Valley

Over the past few months, Audrey WattersDan Meyer, and Keith Devlin have been critical of Silicon Valley, edtech startups, and iPad textbooks which hope to “disrupt” education. In my opinion, the real stumbling block to meaningful change is students’ formal reasoning skills — analytical thinking that cannot be cultivated by pausing and rewinding video or playing Math Blasters.

Here are my 5 points:

  1. Many of our students are transitioning from concrete to formal reasoning.
  2. A significant barrier to learning for understanding is students’ own formal reasoning skills.
  3. Formal reasoning skills (and thus learning for understanding) can be developing when instruction is structured around the Learning Cycle.
  4. Silicon Valley and edtech startups have been focusing on (often inappropriately) just a small fraction of the learning cycle.
  5. My Challenge to Silicon Valley: Help students learn for understanding by innovating around the rest of the learning cycle.

1. Many of our students are transitioning from concrete to formal reasoning.

Below are 3 reasoning puzzles, each followed by a video of college students attempting to solve the puzzle while explaining and discussing their logic. It’s a highly illuminating look at students’ reasoning processes.

I. The Algae Puzzle (Combinatorial Reasoning)

II. The Frog Puzzle (Proportional Reasoning)

III. The Mealworm Puzzle (Scientific Reasoning)

2. A significant barrier to learning for understanding is students’ own formal reasoning skills.

You’re probably thinking, “So, what? Just because Johnny can’t figure out all the possible combinations of algae doesn’t mean he can’t learn physics.” But the research strongly suggests that it does, even in interactive engagement classes.

In a previous post, I presented this graph from Hake’s famous six thousand student study:

As you can see, interactive engagement course outperformed traditional courses in learning gains as measured by the Force Concept Inventory (FCI). The FCI is the most widely used test of physics understanding. But why is there such a wide range of FCI gains among the IE courses and (not shown) among the individual students within a particular course? A study entitled “Why You Should Measure Your Students’ Reasoning Ability” (Coletta, Phillips, and Steiner) suggests reasoning ability is strongly correlated with physics success.

In the study, several different physics courses administered both the FCI (to measure physics gains) and the Lawson Test of Classroom Reasoning Skills (to measure formal reasoning ability). The Lawson test contains several items very similar the three puzzles above. Here’s what they found:

The data were split into quartiles based on the Lawson scores. The light green bars represent the average Lawson test score for each quartile and the dark green bars represent the average FCI gain for each quartile. There is clear correlation between reasoning ability and learning gains in physics. I’d wager this correlation extends to other subjects as well.

3. Formal reasoning skills (and thus learning for understanding) can be developed when instruction is structured around the Learning Cycle.

According to Piaget, intellectual growth happens through self-regulation — a process in which a person actively searches for relationships and patterns to resolve contradictions and to bring coherence to a new set of experiences.

In order to get students to experience self-regulation and further develop their reasoning skills, classroom experiences should be constructed around the Karplus learning cycle, which contains the the stages of EXPLORATION, INVENTION, and APPLICIATION. From Karplus’s workshop materials on the learning cycle:

EXPLORATION: The students learn through their own actions and reactions in a new situation. In this phase they explore new materials and new ideas with minimal guidance or expectation of specific accomplishments. The new experience should raise questions that they cannot answer with their accustomed patterns of reasoning. Having made an effort that was not completely successful, the students will be ready for self-regulation.

INVENTION: Starts with the invention of a new concept or principle that leads the students to apply new patterns of reasoning to their experiences. The concept can be invented in class discussion, based on the exploration activity and later re-emphasized by the teacher, the textbook, a film, or another medium. This step, which aids in self-regulation, should always follow EXPLORATION and relate to the EXPLORATION activities.  Students should be encouraged to develop as much of a new reasoning pattern as possible before it is explained to the class.

APPLICATION: The students apply the new concept and/or reasoning pattern to additional examples. The APPLICATION phase is necessary to extend the range of applicability of the new concept. APPLICATION provides additional time and experiences for self-regulation and stabilizing the new reasoning patterns. Without a number and variety of APPLICATIONs, the concept’s meaning will remain restricted to the examples used during its definition. Many students may fail to abstract it from its concrete examples or generalize it to other situations. In addition, APPLICATION activities aid students whose conceptual reorganization takes place more slowly than average, or who did not adequately relate the teacher’s original explanation to their experiences. Individual conferences with these students to help identify and resolve their difficulties are especially helpful.

4. Silicon Valley and edtech startups have been focusing on (often inappropriately) just a small fraction of the learning cycle.

Unfortunately, Silicon Valley has been dumping its disruptive dollars almost solely into the INVENTION phase and on the tail-end of the phase at that. It views education purely as a content consumption process and ignores the development of formal thinking and reasoning.

Remember, in the invention phase, “The concept can be invented in class discussion, based on the exploration activity and later re-emphasized by the teacher, the textbook, film, or another medium.” That’s Khan Academy videos, flipclass videos, iBooks, an similar technologies designed to present content via direct instruction. However, “Students should be encouraged to develop as much of a new reasoning pattern as possible before it is explained to the class.” Which means that this type of direct instruction should be as minimal as possible, because it robs kids from reasoning and making meaning. In other words, Silicon Valley is putting its energy into the portion of the invention phase that should be as small as possible!

Now let’s look at the application phase. There has been some development here as well, most notably in apps and exercise software which seek to gamify the classroom. But the application phase isn’t about getting 10 right answers in a row or solving problems to shoot aliens. Remember, Without a number and variety of APPLICATIONs, the concept’s meaning will remain restricted to the examples used during its definition. Real learning with understanding means students can reason about the concepts well enough to use them in new and unique concepts (aka transfer). Applications should require students to examine their own thinking, make comparisons, and raise questions. Great applications examples are open-ended problems, problems which present a paradox, and student reflection on both successful and unsuccessful problem-solving methods. Deep learning does not end when the Application phase begins.

5. My Challenge to Silicon Valley: Help students learn for understanding by innovating around the rest of the learning cycle.

Real disruption isn’t going to come from skill and drill apps, self-paced learning, badges, YouTube videos, socially-infused learning management systems, or electronic textbooks. Students must be continuously engaged in the learning cycle. We need to equip our students with the reasoning skills to learn how to learn anything. Focus on experiences in the exploration phase, meaningful sense making in the invention phase, and worthy problems in the application phase.

But, in reality, we only have ourselves to blame. It shouldn’t come as a surprise to us when students can’t think — the status-quo in education has been to spend most of our time on content delivery while robbing students of exploring and reasoning opportunities. And current edtech trends aren’t fixing this problem; rather, they are making it easier to make the problem worse.

To be fair, a few “good disrutptions” have occurred in the other phases of the learning cycle. Motion detectors allow students to “walk a graph” so they can easily explore position-time and velocity-time graphs. GeoGebra allows students to explore and play with geometry and functions quickly and easily. PhET simulations allows students to conduct open-ended planetary orbit experiments that would be impossible in real life. And VPython programming gets students to apply what they learned to write their own simulations and visualizations.

So when presented with the next great edtech “disruption,” ask yourself: has this innovation actually changed how student think about math and science concepts? Or has it just allowed students to get a few more questions correct on the state exam?


For further reading:

The next two articles:

  • “Promoting Intellectual Development Through Science Teaching” (Renner and Lawson)
  • “Physics Problems and the Process of Self-Regulation” (Lawson and Wollman)

are found here: Module 11: Suggested Reading (Workshop Materials for Physics Teaching and the Development of Reasoning)

Meet a Modeler: Colleen Megowan-Romanowicz

Today’s guest post is from Colleen Megowan-Romanowicz, the Executive Officer of the American Modeling Teachers’ Association. It is the fifth post in a series which shares the stories of teachers using Modeling Instruction.

Colleen writes:

I am a physics teacher. I have been teaching for 25 years, and I have taught many other subjects, but my identity as a physics teacher is as firmly grounded in the texture of my being as my identity as mother, “leftie”, and redhead.

I entered teaching through “the back door”, when my first choice career, medicine, was no longer an option. In elementary school, I wanted to be president of the United States, in high school I was hooked on marine biology, but when I entered college in 1969, I was committed to pre-medicine. Four years later, in classic overachiever fashion, I not only had a bachelor’s degree, but a husband and two children as well. By age 23, I had given birth to my third child and come to the realization that medical school was out of the question. I considered nursing, but thought it likely that I would harbor secret resentment toward the doctors with whom I worked. Teaching seemed the only other practical alternative for someone with a biology major and chemistry minor, so back to school I went. A year later, when I completed student teaching I knew I had, quite by accident, found my calling.

Twenty two years ago I began teaching physics—not a trivial task for someone who had completed college physics 18 years earlier. But how hard could it be, to stay ahead of 12 seventeen year old girls in one section of high school physics? (I taught at a girls’ Catholic high school in Sacramento) I unearthed my old physics books, bought some new ones, and discovered what I had missed completely the first time around. Physics is the foundation. It is why chemistry and biology exist. It is both a context and a rationale for mathematics.

It was a life changing realization—my kids joked that it was like God’s voice from the burning bush. From then on, I wanted to become the best physics teacher I could be. I took classes and workshops. I gave classes and workshops. I discovered that to be a good physics teacher I needed to be a good mathematics teacher, a good cognitive scientist, a good linguist and discourse analyst, even a good philosopher. And by all accounts I was good. I had plaques and certificates to prove it. I grew the physics program at my high school and converted it to physics-first. We went from 12 students to over 170 (in a school with just under 500 students—all girls). But I knew deep down I wasn’t really that good. My students learned to solve tricky physics problems and they could get into good colleges, but they never did that well on the FCI.

In 1998 I discovered Modeling Instruction…another life changing experience. After my first Modeling Workshop at UC Davis (led by Don Yost and Wayne Finkbeiner…Mark Schober, our current AMTA president, and I were classmates in that workshop) I went back into my classroom thinking I finally had the key to really helping my students learn physics. Unfortunately things didn’t unfold quite as I had imagined. I was not brilliant. I struggled and so did my students, but even inexpertly implemented, I could see how much better modeling was at revealing what my students were thinking. The following summer I went back to Davis for my second Modeling Workshop and the next school year I did better (and so did my students). By year 3, I finally felt like I knew what I was doing. I became intensely curious about how and why modeling worked for my students. I read whatever I could get my hands on, but finally decided that if I was going to figure modeling out, I’d have to be systematic about studying it. I needed someone to guide my studies, and since I had met David Hestenes while I was at UC Davis and he encouraged me to look into a program in physics education research, I contacted him and asked if I could be his graduate student. He agreed.

Although I loved teaching at Loretto High School for Girls in Sacramento, ten years ago I moved to Phoenix, took the job of designing the mathematics and science program for the new Jewish high school (a physics first integrated science and mathematics curriculum), and began my graduate studies at ASU. My research interest was in the integration of physics and mathematics, the physics first sequence of instruction, and the ways in which student discourse shapes thinking and reasoning in physics. I completed the Physics Department’s Master of Natural Science (MNS) degree program in 2004, along the way engaging in the first of many classroom research projects in collaboration with three other teachers. We designed and tested a modeling instruction unit in special relativity. During this period I also began teaching the Leadership Workshop course and coordinating the action research component of the MNS program. Over the years I have mentored over 40 teacher action researchers through their required MNS research experience. In fact it was during a Leadership Workshop meeting one day I heard that a handful of teachers in the Advanced Modeling course who were concerned about the future of modeling instruction, had invented AMTA the night before over a pitcher of beer (or 2). I immediately took out my checkbook and wrote Patrick Daisley (another UC Davis modeling classmate, who still serves AMTA as treasurer) a check for $25 to become one of the charter members of the organization.

In 2007, under the guidance of David Hestenes, I earned my PhD in Physics Education Research from ASU. My research was a study of whiteboard mediated cognition in four different modeling classrooms. After doing a year of postdoctoral research on embodied cognition in science education for ASU’s Arts, Media and Engineering program I took a faculty position in one of ASU’s colleges of education (we had 3 of them at the time) teaching elementary science methods. I secured funding for the Modeling Institute—a middle school STEM Modeling MNS degree program. Last summer I gave an invited talk and a demonstration of modeling instruction in Beijing. (They loved it. Chinese teachers want to learn modeling instruction.) In the fall I started writing grants in earnest to obtain funds to help scale AMTA up. To date I have written four grants. None have been awarded yet—I think perhaps the NSF reviewers are having a hard time wrapping their brains around a grassroots organization of this type. This spring I offered my services to the AMTA executive board as executive officer. When they took me up on it, I resigned my faculty position at ASU and accepted a part-time research position so that I could devote as much time as possible to helping AMTA “go big”. (I am fortunate to have the support of a loving husband who tells me I should do what makes me happy.) My AMTA position will not be salaried until I can land us some external funding.

Pedagogically, I approach teaching via modeling theory, and cognitively I am particularly interested in the phenomenon of distributed cognition and how a situated group learning experience ultimately distills into individual student understanding. I am also convinced that mathematics and science instruction can and should be integrated. I undertook this with good results for three years at the Jewish high school, and I built this curriculum design into the NSF-funded master’s degree program for middle school teachers. I hope that my work will enable modeling instruction to become self-sustaining and I would like contribute to large-scale curriculum integration in mathematics and science. At the very least, I hope that by having a foot in both the mathematics education and physics education camps, I can foster a dialogue and an ongoing relationship between the two communities that ultimately enriches both.

You Khan’t Ignore How Students Learn

From Harvard EdCast’s “The Celebrity Math Tutor” (transcript below)

Buffy Cushman-Patz: What efforts do you take to ensure that your pedagogy is consistent with what education research shows about how people learn, especially how people learn math and science?

Sal Khan: The reality is…when we’re going through the first pass of the videos there was very little effort; it really was just me doing my best shot and seeing what I would have liked to have and that my cousins and other people on YouTube seem to be benefiting from. Now we are getting pretty deep on our own analytics on our website. In terms of the broader research, I think there are people who come up with rules of thumb based on some study or another, and I’m not saying the study’s not valid, but I’m saying sometimes it’s not necessarily…you can’t come up with these rules the way all teaching has to be done like this. I think, for example, those research – you know there’s this one research study that’s been going around, kind of saying that… it first kind of hints at videos – maybe people can’t learn from videos and that if you do make a video you always have to address the misconceptions first and if you don’t address the misconceptions first, people are always going to conform whatever you say into their preexisting misconceptions. I don’t think that research is wrong; I think that is often the case. I don’t think it has to be religiously applied – that you have to, because in some areas people might not have even thought about something, they might not have misconceptions or maybe you explain once and you reemphasize that this goes against misconception A, B, C, or D. So I don’t think there’s one formula there. And I think frankly, the best way to do it is you put stuff out there and you see how people react to it; and we have exercises on our site too, so we see whether they’re able to see how they react to it anecdotally. You see, the comments they put, they’ll ask questions based on… Every time I put a YouTube video up, I look at the comments — at least the first 20, 30, 40 comments that go up — and I can normally see a theme: that look, a lot of people kind of got the wrong idea here. Or maybe some people did, and then I’ll usually make another video saying “Hey, look after the last video, I read some the comments and a lot of y’all are saying this is not what we’re talking about it’s completely different.” So that means I am attacking the misconceptions. But I think if you had a formula in place, and you do that every time, I think once again the learner will say, “This guy’s not thinking through it and he’s not teaching us his sensibilities, his thought processes. He’s just trying to meet some formula on what apparently is good video practice. “And I’ll go the other way: you can dot all the “i”s and cross all the “t”s on some research-based idea about how a video should be made, but if your voice is condescending, if you’re not thinking things through, if it’s a scripted lecture, I can guarantee you it’s not going to appeal with students. And I think the other mistake people… I’d like some research to be done with this, and it really goes against the grain against what most people assume is what even video is about is, that all the feedback that we’ve gotten is not seeing the face is, maybe, one of the most compelling things about it is hearing the voice, because the face is hugely distracting. And so long answer to a short question. I think it’s nice to look at some of the research, but I don’t think we would… and I think in general, people would be doing a disservice if they trump what one research study does and there’s a million variables there: who was the instructor, what were they teaching, what was the form factor, how did they use to produce it? You’d be doing yourself a disservice if you just take the apparent conclusions from a research study and try to blanket them onto what is really more of an art. It’s like saying that there’s a research study on what makes a nice painting and always making your painting according to that research study that would obviously be a mistake.

It’s unfortunate that “The Teacher to the World” was only able to mention one study about how students learn. A study which he then dismisses. And since he doesn’t describe any other efforts to be consistent with pedagogy, his real answer to Buffy’s question is: “I don’t.”

Let’s look at Khan’s response in more detail:

“Now we are getting pretty deep on our own analytics on our website.”

I don’t see how statistics about how many times students have watched/rewound each video or how many times students miss a question in the exercises tells us anything about how effective his videos are. I don’t see how he could use that data to refine his future videos in the same way a teacher would reflect and refine lessons from year-to-year.

“…you can’t come up with these rules the way, all teaching has to be done like this.” 

He’s right. There is no one rule, no one formula, for teaching. The Physics Education Research User Guide website contains 51 different research-based teaching methods. The website can filter these methods by type, instructional setting, course level, coverage, topic, instructor effort, etc. And while 51 different methods may seem overwhelming, they all have one important characteristic in common: interactive engagement (IE).

So what is interactive engagement? Hake defines IE as methods “designed at least in part to promote conceptual understanding through interactive engagement of students in heads-on (always) and hands-on (usually) activities which yield immediate feedback through discussion with peers and/or instructors.”

A video lecture is not interactive engagement.

“…maybe you explain once and you reemphasize that this goes against misconception A, B, C, or D.”

Khan (along with most of the general public, in my opinion) has this naive notion that teaching is really just explaining. And that the way to be a better teacher is to improve your explanations. Not so! Teaching is really about creating experiences that allow students to construct meaning.

“And I think frankly, the best way to do it is you put stuff out there and you see how people react to it…”

This is flawed. People’s reactions are not indicators of effectiveness. Pre/post testing is needed to indicate effectiveness. Ah, but perhaps there is a relationship between people’s reaction and effectiveness? The research indicates otherwise. In the very research study that Khan says is valid (and then dismisses), student actually did better after watching the videos they described as confusing, and made no gains after watching the videos they described as easy to understand. Additional research indicates that when an instructor switches over to IE methods, course evaluations from students tend to be more negative than the previous year, despite gains from students going up. (Don’t worry, a few years after the switch to IE, the evaluations go back to pre-IE levels.)

You see, the comments they put, they’ll ask questions based on… Every time I put a YouTube video up, I look at the comments — at least the first 20, 30, 40 comments that go up — and I can normally see a theme: that look, a lot of people kind of got the wrong idea here. Or maybe some people did, and then I’ll usually make another video saying “Hey, look after the last video, I read some the comments and a lot of y’all are saying this is not what we’re talking about it’s completely different.” So that means I am attacking the misconceptions.”

Again, it’s not about crafting better explanations. It’s about helping students wrestle with their conceptions and guiding them.

“But I think if you had a formula in place, and you do that every time, I think once again the learner will say, “This guy’s not thinking through it and he’s not teaching us his sensibilities, his thought processes. He’s just trying to meet some formula on what apparently is good video practice.”

Another naive notion of teaching. The goal is not for the teacher to teach the students his sensibilities and thought processes. The goal is for the teacher to have the students use their sensibilities and thought processes to reason through the concepts. Empower the student to think for themselves, rather than consuming the teacher’s ideas.

“And I’ll go the other way: you can dot all the “i”s and cross all the “t”s on some research-based idea about how a video should be made, but if your voice is condescending, if you’re not thinking things through, if it’s a scripted lecture, I can guarantee you it’s not going to appeal with students.”

Yet there are plenty of people who prefer to watch Walter Lewin’s highly-scripted performance lectures to Khan’s off-the-cuff style lectures. (Though remember that preference has nothing to do with effectiveness. In fact, Lewin’s showstopping lectures were no more effective than the mundane professors before him.)

“…and I think in general, people would be doing a disservice if they trump what one research study does and there’s a million variables there: who was the instructor, what were they teaching, what was the form factor, how did they use to produce it? You’d be doing yourself a disservice if you just take the apparent conclusions from a research study and try to blanket them onto what is really more of an art. It’s like saying that there’s a research study on what makes a nice painting and always making your painting according to that research study that would obviously be a mistake.”

Here is the most damning piece of evidence, from Hake’s famous six thousand student study:

The six thousand students in Hake’s study were not in a single class. They were in 62 different courses, from high school to university, taught by a variety of instructors with different personalities and expertise. And yet ALL the IE courses made greater gains (the slope of the graph — between 0.34 and 0.69) than the traditionally taught courses (average 0.23). It should also be noted that the green IE courses above were NOT identical and did not follow some magic teaching formula. They only had to conform to the Hake’s broad definition of IE given above. So you see, those “million variables” that Khan mentions don’t matter. METHOD trumps all those other variables.

But surely teacher expertise matters, right?

Yes and no.

NO: As seen in Hake’s study above, when comparing IE teachers to traditional teachers, expertise doesn’t matter because IE always trumps traditional.

NO: Note the small spread of the red-colored traditional classes shown above, which hover around an average gain of 0.23. Traditional methods produce very similar results no matter the level of the course or instructor.

YES: When comparing IE teachers to other IE teachers, expertise does matter. IE gains ranged from 0.34 and 0.69. As instructors get more comfortable using IE methods, gain increases. See, for example, this graph about the effectiveness of modeling instruction:

Expert modelers had higher gains than novice modelers.

But surely there is a place for lectures, right?

Yes, BUT students must be “primed” for the lecture. According to the PER User’s Guide FAQ:

It is possible for students to learn from a lecture if they are prepared to engage with it.  For example, Schwartz et al. found that if students work to solve a problem on their own before hearing a lecture with the correct explanation, they learn more from the lecture.  (For a short summary of this article aimed at physics instructors, see these posts – part 1 and part 2 – on the sciencegeekgirl blog.) Schwartz and Bransford argue that lectures can be effective “when students enter a learning situation with a wealth of background knowledge and a clear sense of the problems for which they seek solutions.”

For more information about  how people learn, I highly recommend two great FREE online books from the National Academies Press:

If you are a physics teacher, be sure to get these discipline specific books about how students learn physics:

And just in case you think I’m an armchair critic with nothing to contribute, I want you to know I’ve opened up my classroom to the whole world on my Noschese 180 blog, where I’ve been sharing a picture and a reflection from each school day. It’s not quite the Noschese Academy, but I hope you find it worth reading and commenting, as we journey through teaching together.

Meet a Modeler: Fran Poodry

Today’s guest post is from Fran Poodry, the president-elect of the American Modeling Teachers’ Association. Fran teaches high school physics in Pennsylvania. It is the fourth post in a series which shares the stories of teachers using Modeling Instruction. Fran writes:

I was a physics major in college and I knew all along that I wanted to become a teacher.  I took all my undergraduate education courses at a small private liberal-arts college, where I learned many things that are now called “21st century education” which I find humorous. Since I planned to teach, a professor I knew (but not at my school) suggested I join the physics teaching mailing list, PHYS-L, and from there I learned about Physics Education Research.  I also got to know (virtually) Joe Redish, Dewey Dykstra, Priscilla Laws, and others.  I wound up working for Priscilla Laws for two summers, learning about Workshop Physics, Vernier probes and interfaces (remember the ULI?) and analyzing data from student surveys pre- and post-instruction.

I graduated with a BA in Physics and a Pennsylvania teaching certificate in 1992, and I have been teaching physics since January, 1993.  I taught for five and a half years in Philadelphia public schools. Jane Jackson recruited me for a modeling workshop when I attended a summer AAPT meeting at University of Maryland (having known me from my online presence), and  I took modeling workshops in 1997 and 1998. These workshops were at University of Wisconsin-River Falls and were led by Rex Rice and Dave Braunschweig. I still make Rex’s guacamole recipe—yum!

As with many, my life was changed by Modeling Instruction.  I felt like I had discovered the way I wanted to teach, I just hadn’t figured it out before.  Also, I was amazed by how much physics I learned at the workshops! Though I loved using Modeling Instruction, the situation in my school was taking its toll.  The large class sizes, under-prepared students, tragic events, and the bars on the windows were all hard to deal with.  I decided I had to leave Philadelphia or leave teaching.  I left the School District of Philadelphia in 1998.

After leaving Philadelphia schools, I have been teaching in various suburban districts in New Jersey and Pennsylvania.  I love my current school (where I am starting my 10th year), and I have great colleagues, but only one of my colleagues is also a Modeler (though we have four full-time physics teachers in my building).  I have used Modeling Instruction with kids in conceptual classes, honors classes, and in-between, and from a variety of socio-economic levels.  I have struggled to use Modeling with my AP students, since they have already (mostly) had a year of Modeling Instruction in their first-year physics class with my colleague. While I have enjoyed teaching mostly conceptual-level classes and AP classes for the past 8 years, I am looking forward to teaching honors-level and AP classes this school year, and trying out Standards-Based Grading.

I joined the AMTA board last year as Vice President, so am currently the President-Elect and I will be President next year.  I feel very strongly that the work of AMTA is vital for keeping Modeling Instruction alive and growing and funded, unlike previous worthy programs that were not self-sustaining (IPS, PSSC, Project Physics, etc). One way that to help this happen is through greater publicity.  Most science teachers in my district have no idea what Modeling is, and when offered a 2-hour introduction on an inservice day, only two teachers (out of over 40 high school science teachers) came to the session – the rest chose other sessions.  Not only teachers need to know about Modeling Instruction, the word also needs to get out to the politicians, the parents, and the voting public.

You can follow Fran Poodry on Twitter: @MsPoodry.

Physics Teaching 2.Uh-Oh

My first talk! Given at the STANYS 2011 Physics Breakfast on November 8th, 2011 in Rochester, New York


Links to resources mentioned in the talk:

A huge thank you to Gene Gordon for inviting me to speak at the breakfast. It was great to share my passions and meet my virtual colleagues face-to-face!

I’d love any feedback you have, positive and negative. Thanks!

Modeling Stories: Mark Schober

Today’s guest post is from Mark Schober, the new the president of the American Modeling Teachers’ Association. It is the third post in a series which shares the stories of teachers using Modeling Instruction.

From a childhood interest in dinosaurs and trains, my palentological affinity morphed into an interest in science and later into physics teaching — my fascination with trains has never wavered. I majored in mathematics, physics, and theater arts and then earned masters degrees in physics and in secondary education. Along the way, my undergraduate roommate (also a physics teacher) had ties to AAPT through his physics-teaching father, introducing me to the power of professional development communities, physics education research, and the breadth of innovations in physics instruction. In grad school, my advisor was testing early drafts of the University of Washington‘s Physics by Inquiry and Tutorials in Introductory Physics. In weekly meetings we would discuss the structure of the socratic questions and the conceptions the materials were designed to address, giving me a great insight into research-informed curricula that I implemented as his TA. However, when I began teaching high school physics in St. Louis, I quickly found that the University of Washington materials were so highly tailored to particular audiences (pre-service elementary education majors and first-year physics majors’ recitation sessions) that they were unusable in high school.

After my second year of physics teaching, I was encouraged to participate in a Modeling Workshop at UC Davis in 1998, led by Don Yost and Wayne Finkbeiner. Modeling established a pedagogical framework that transcended any particular set of curriculum materials, allowing me to use my prior skills and background in much more productively. In the followup workshop in 1999, I worked with other participants to develop modeling materials for teaching light. In 2000 and 2001,  Don Yost, Larry Dukerich, and I consolidated the light curriculum materials produced by all the workshops into the “standard” version. During this time, I also created an extensive website of the Modeling materials, though which I’ve met lots of other Modelers who have found it to be a useful resource. (www.modelingphysics.org)

I apprenticed with Rex and Debbie Rice in a modeling mechanics workshop in St. Louis in 2000, and in 2003 I co-led a St. Louis mechanics workshop with John Koski. In the summers from 2004-2007 I led workshops in light and E&M for Laird Kramer at Florida International University with co-leaders Matt Watson, David Kirkpatrick, and Russ Harcha. I’ve led a number of half-day workshops in conjunction with the St. Louis Area Physics Teachers and I worked closely with Rex Rice and Bill Brinkhorst to develop the amusement park physics curriculum for Six Flags St. Louis. In 2010 I led a mechanics workshop at the University of New Mexico for Jeff Saul and a Models of Light workshop at ASU.

After 14 years of teaching in St. Louis, my wife and I moved to New York City last summer. I got the chance to try 9th grade Modeling physics for the Regents in Harlem — a fantastic and humbling experience at the same time. However, the NYC DOE’s threatened layoffs of new hires sent me looking elsewhere, and this year I will be teaching chemistry and physics as well as taking on department head duties at Trinity School in Manhattan. To prepare for teaching chemistry, I took the Chemistry Modeling workshop this summer under the stellar leadership of Tammy Gwara. The coherence and development of the chemistry storyline has me very excited to teach it. Also, working with Fernand Brunschwig, Seth Guiñals-Kupperman, Nate Finney, and Andrew Stillman, we formed the Physics Teachers of New York City and have a full slate of monthly workshops for the upcoming school year.

Mark was recently interviewed for NSTA’s Lab Out Loud podcast. Listen to it here: Episode 68: Modeling Instruction in the Science Classroom.

Why I’m a Modeler: Nick Cabot

Today’s guest post is from Nick Cabot. It is the second post in a series which shares the stories of teachers using Modeling Instruction.

My journey as a Modeler began 2 years after I completed my master’s in physics which was also how long I’d been teaching physics at Nathan Hale High School in Seattle.  I attended the first series of Modeling Leadership Workshops way back in 1995 through 1997 (yes, three summers), which were held at ASU and UI Chicago – I think I saw an ad for the Workshops in The Physics Teacher.  I was at the Chicago workshops, which were led by Gregg Swackhamer – a wonderful teacher – and it wasn’t five minutes into the first day when, like so many other teachers, I thought to myself, “Why hadn’t I been taught this way!?”  Despite my recent master’s degree, the Workshop really was the first time I’d seen Newtonian mechanics presented as a coherent whole, rather than as a series of, relatively speaking, disjointed formulas and problems.  I suppose the conceptual framework was always there, but it seemed to me that, not unlike mathematics instruction, we just turned the page and moved on.  As Larry Dukerich, another wonderful teacher and Workshop leader, is so fond of saying (and me of quoting him), “Textbooks maybe logical, but they are not psycho-logical,” by which he means that textbook authors and most teachers never consider for whom the textbooks or instruction are for.  Anyway, my whole conception of physics and physics teaching were completely overturned in favor of the Modeling paradigm.  On the strength of NSF support for the Workshop, I called in a political favor and got the school board to outfit my classroom with computers, ULIs, and probeware – and I was off and running.

Well, to make a long story somewhat shorter, based, in part, on my modest successes as Modeler, in 2001 I was awarded an Einstein Fellowship to the NSF where I had the opportunity to work in the Division of Undergraduate Education with the folks who manage their science teacher preparation portfolio.  I very much enjoyed the perspective afforded me by seeing the initiatives and proposals universities all over the country were submitting to reform undergraduate education and teacher preparation so as to take into account the years of research in science teaching and learning – finally!  Building off that experience I decided to get a Ph.D. and in 2008 (I continued to teach full time except for one year), I successfully defended my dissertation on the impact of Modeling Instruction on physics teachers.  Since then I’ve been at UNC Chapel Hill as a clinical assistant professor mostly teaching math and science methods and math content classes to pre-service, graduate, and post-baccalaureate elementary and secondary teachers.  And by virtue of being clinical faculty (as opposed to tenure-track, trapped in the publish-or-perish grind), I’ve also been able to work with math and science teachers and teacher educators in Thailand, China, and the Galapagos Islands.  I attribute it all to the broadening of my horizons that occurred because I showed up at a Modeling Workshop in Chicago one hot day in June, 1995.

So, why did I join the AMTA?  Mostly because I want to do whatever I can to help keep the dream alive and growing.  Modeling is a better science pedagogy because, more than any other with which I’m familiar (and I’m familiar with most of them), it brings sharp instructional focus to the two most important aspects of teaching science: models and classroom discourse.  Humans are natural modelers – it’s how we explain phenomena to ourselves.  Even though many of our models of the physical world are non-Newtonian (mostly because we can’t see frictional forces), they work pretty well (else we’d be dead!).  And because they are, in fact, generally “adequate,” trying to teach over the top of them is like speaking a foreign language – just so much gibberish that doesn’t jibe with everyday experience.  Modeling acknowledges students’ prior experience and provides opportunities for them to confront and challenge their everyday models.  Classroom discourse is a vital part of this experience because it gives students real-time feedback.  We’re expecting our students to undergo conceptual change from their everyday models to more scientifically aligned models – well, this takes mental energy (our brains are “lazy”) and guidance.  For the vast majority of students, the necessary prodding and guidance is available only in a classroom setting with a teacher who recognizes these incontrovertible facts about learning, that is, a Modeling teacher.  Modeling is our best chance to tap the reservoir of initiative and creativity in our students that historically has been ignored by those science teachers who couldn’t understand why their students didn’t understand.  How could I not help?

Nick Cabot is on the board of the American Modeling Teachers’ Association.

Why I’m a Modeler

This is the first in a series of posts sharing the stories of teachers using Modeling Instruction.

My name is Frank Noschese and I’m on the American Modeling Teachers’ Association Board of Directors as Member-at-Large. Here’s my modeling story:

I had heard about modeling instruction on various physics teaching email lists when I began teaching in 1998. “Awesome,” “life-changing,” and “the best professional development I ever had” were phases my virtual colleagues frequently used when describing modeling and the intensive summer workshops.

After my first few years of teaching, when I was finally able to keep my head above water, I investigated the Modeling Instruction program and poked around the ASU modeling website. I found the mechanics worksheets. I had struck gold! I was excited to transform my classroom into the hands-on, minds-on, discussion-based physics course I had been longing to teach. I opened up the first document file like it was my 6th birthday all over again.

I’ll be honest: At first glance, I was not impressed. The worksheets seemed very pedestrian and had problems just like any other textbook. Additional representations like motion maps and energy pie graphs seemed juvenile.

But the praise kept pouring in on the email lists. And there was this nagging voice that wouldn’t go away. It kept saying, “Maybe there is more to this modeling thing.” So I enrolled in a 2.5 week workshop called “PHY 620: Powerful Ideas And Quantitative Modeling: Mechanics” run by Buffalo State College’s Physics Education Department. The workshop leaders were Dewayne Beery, Dan MacIsaac, Marie Plumb, Chris Filkins, Joe Zawicki, and Kathleen Falconer.


In the workshop, the power of modeling became clear. It wasn’t about the worksheets. It wasn’t about the labs. It was about the discussion and discourse and the questioning and the arguing and the failing and the guiding and the succeeding that happened as we worked through the material. The multiple representations aspect was exceptionally helpful and powerful, not juvenile. I was hooked. I returned to school in September feeling more excited (and nervous) than before.

That first year went really well, I thought. As did successive years. Though I feel my discussion/questioning skills have been getting a little rusty and I’m longing to take a second workshop in E&M or Waves.

The Modeling Listserv has always been an invaluable resources for sharing ideas and asking questions. As have other email lists. But I slowly started noticing other teachers (particularly younger teachers and math teachers) reaching out for help and offering advice by blogging and tweeting. They weren’t connected to the email lists and weren’t going to hear about Modeling Instruction the same way I had. Upon first hearing the word “modeling,” they might incorrectly think it means “I do, We do, You do”-type teaching. I wanted to reach out to these other teachers and showcase modeling and other physics education related pedagogies. So in the summer of 2010, I joined Twitter and started this blog. The word is getting out, even if it means shouting over the voices of less effective pedagogies which have been getting the lion’s share of the money and media attention.

I became an AMTA member because I want Modeling to continue and thrive. And I wanted to be on the Board to help bring AMTA and Modeling into the view of educators beyond physics and show the world what effective science instruction looks like.

I hope you’ll join me.

Khan vs. Karplus: Elevator Edition

Exhibit A: Sal Khan on elevators


Exhibit B: My students on elevators
Framed around the Karplus learning cycle (Exploration, Invention, and Application) my students construct the conceptual and mathematical models themselves.

1. Exploration Phase:

2. Invention Phase: 

  • Draw a motion diagram for the object attached to the scale when the scale is stationary, then being pulled up and then stops.
  • Draw a force diagram for the object attached to the scale when the scale is stationary, then being pulled up and then stops. Decide whether the force diagram is consistent with the motion diagram. How is the force diagram related ot the reading of the scale?
  • Use the force diagram and the idea under test to make a prediction of the relative readings of the scale.
  • Observe the experiment and reconcile the outcome with your prediction.

(Video and questions for this phase taken from Eugenia Etkina’s awesome site Physics Teaching Technology Resource which has many more video experiments.)

3. Application Phase:

Instead of showing our students a better lecture, let’s get them doing something better than lecture.

UPDATE: Welcome New York Times readers! Other recommended posts:

Khan Academy: My Final Remarks

Many people aren’t getting the nuances of my recent Khan Academy arguments. I’ll make my final remarks and then put this thread to rest.

Khan Academy videos are nothing new. MIT OpenCourseWare has been around for TEN YEARS now. Walter Lewin’s awesome physics lectures have been available for most of those 10 years — despite the fact they are pseudoteaching, and his students emerged with no greater understanding of physics than those of professors before him.

And I didn’t have a problem with Khan Academy (as a collection of videos) until very recently.

For me, the problem is the way Khan Academy is being promoted. The way the media sees it as “revolutionizing education.” The way people with power and money view education as simply “sit-and-get.”

(c) tcoffey (via Flickr)

If your philosophy of education is sit-and-get, i.e., teaching is telling and learning is listening, then Khan Academy is way more efficient than classroom lecturing. Khan Academy does it better.

But TRUE progressive educators, TRUE education visionaries and revolutionaries don’t want to do these things better. We want to DO BETTER THINGS.

Ironically, everything that is wrong with Khan Academy has been addressed in two previous TED talks:

According to Dan, today’s math curriculum is teaching students to expect — and excel at — paint-by-numbers classwork, robbing kids of a skill more important than solving problems: formulating them. How does Khan Academy foster problem posing and creativity?

Rather than instructing students with Khan’s videos, we should be inspiring them to figure things out on their own and learn how to create their own knowledge by working together. For example, instead of relying on lectures and textbooks, the Modeling Instruction paradigm emphasizes active student construction of conceptual and mathematical models in an interactive learning community. Students are engaged with simple scenarios to learn to model the physical world. In comparison to traditional instruction, Modeling is extremely effective — under expert modeling instruction high school students average more than two standard deviations higher on a standard instrument for assessing conceptual understanding of physics.

Watch one Modeling class in action:

In the clip, the teacher says, “I don’t lecture at all. Instead, I create experiences for the students either in the lab or puzzles and problems for them to solve and it’s up to them to try to figure that out.” I’ve often wondered why this type of teaching hasn’t gotten more attention in the media. Maybe because the teacher is using simple things like whiteboards and bowling balls rather than shiny iPads and SmartBoards?

While Khan argues that his videos now eliminate “one-size-fits-all” education, his videos are exactly that. I tried finding Khan Academy videos for my students to use as references for studying, or to use as a tutorial when there’s a substitute teacher, but I haven’t found a good one. They either tackle problems that are too hard (college level) or they don’t use a lot of the multiple representations that are so fundamental to my teaching (kinematic graphs, interaction diagrams, energy pie graphs, momentum bar charts, color-coded circuit diagrams showing pressure and flow, etc.) Khan Academy videos do not align with proper Physics Education Research pedagogy.

I find it troublesome that the Khan Academy team is not spending time and energy on the pedagogy of teaching math and science, but rather on refining the gaming mechanics of Khan Academy in response to “good” and “bad” behavior of students working through the software exercises. The “gamification” of learning in Khan Academy has had disastrous consequences at the Los Altos school pilot.

There are some truly innovative learning technologies that have been
around for years. If Khan Academy wants to grow out of their infancy as electronic worksheet drills, I hope their team takes a look at these more transformative educational technologies, all of which have been researched and tested:

Khan Academy also promotes the “usefulness” of its dashboard for its exercise software. I find most of that information useless, like knowing how many times a student rewound the movie, how many times she paused it, or how long he spent on a module. Those times could be affected by distractions from family, self-imposed distractions like facebook and texting, etc.

Feedback I would find WAY MORE useful:

  • knowing how many times a student attempted the same problem
  • knowing the student’s answer history to each problem; i.e, what the student’s wrong answers were
  • knowing the type of mistake a student made when choosing a wrong answer; e.g., did he forget to square the distance, did she apply kinetic energy conservation instead of momentum conservation, did he disregard the fact that the forces where in opposite directions, did she confuse force of friction with coefficient of friction, did he assume constant velocity when in fact it was accelerating, etc.
  • software that anticipates and recognizes those common mistakes (like all great teachers do) and gives the students immediate, tailored feedback during the exercise

Finally, everyone is talking about using Khan Academy as a way to do more inquiry and more project-based learning. However, Bill Gates and Sal Khan are not showing any examples about what students and teachers are doing beyond Khan Academy. The news stories are not showing the open-ended problems the kids should be engaging with after mastering the basics — instead they show kids sitting in front of laptops working drills and watching videos. The focus is on the wrong things.

Khan Academy is just one tool in a teacher’s arsenal. (If it’s the only tool, that is a HUGE problem.) Khan Academy can be useful for some kids as vehicle (build skills) to help them get to better places (solving complex problems).

Now let’s please shift the focus (yours and mine) toward the destination.

Important Talks/Media about Khan Academy

More Blog Posts Critical of Khan Academy, from me and others

Khan Academy-Related Blogs