*Today’s guest post is from Colleen Megowan-Romanowicz, the Executive Officer of the American Modeling Teachers’ Association. It is the fifth post in a series which shares the stories of teachers using Modeling Instruction. *

*Colleen writes:*

I am a physics teacher. I have been teaching for 25 years, and I have taught many other subjects, but my identity as a physics teacher is as firmly grounded in the texture of my being as my identity as mother, “leftie”, and redhead.

I entered teaching through “the back door”, when my first choice career, medicine, was no longer an option. In elementary school, I wanted to be president of the United States, in high school I was hooked on marine biology, but when I entered college in 1969, I was committed to pre-medicine. Four years later, in classic overachiever fashion, I not only had a bachelor’s degree, but a husband and two children as well. By age 23, I had given birth to my third child and come to the realization that medical school was out of the question. I considered nursing, but thought it likely that I would harbor secret resentment toward the doctors with whom I worked. Teaching seemed the only other practical alternative for someone with a biology major and chemistry minor, so back to school I went. A year later, when I completed student teaching I knew I had, quite by accident, found my calling.

Twenty two years ago I began teaching physics—not a trivial task for someone who had completed college physics 18 years earlier. But how hard could it be, to stay ahead of 12 seventeen year old girls in one section of high school physics? (I taught at a girls’ Catholic high school in Sacramento) I unearthed my old physics books, bought some new ones, and discovered what I had missed completely the first time around. Physics is the foundation. It is why chemistry and biology exist. It is both a context and a rationale for mathematics.

It was a life changing realization—my kids joked that it was like God’s voice from the burning bush. From then on, I wanted to become the best physics teacher I could be. I took classes and workshops. I gave classes and workshops. I discovered that to be a good physics teacher I needed to be a good mathematics teacher, a good cognitive scientist, a good linguist and discourse analyst, even a good philosopher. And by all accounts I was good. I had plaques and certificates to prove it. I grew the physics program at my high school and converted it to physics-first. We went from 12 students to over 170 (in a school with just under 500 students—all girls). But I knew deep down I wasn’t really that good. My students learned to solve tricky physics problems and they could get into good colleges, but they never did that well on the FCI.

In 1998 I discovered Modeling Instruction…another life changing experience. After my first Modeling Workshop at UC Davis (led by Don Yost and Wayne Finkbeiner…Mark Schober, our current AMTA president, and I were classmates in that workshop) I went back into my classroom thinking I finally had the key to really helping my students learn physics. Unfortunately things didn’t unfold quite as I had imagined. I was not brilliant. I struggled and so did my students, but even inexpertly implemented, I could see how much better modeling was at revealing what my students were thinking. The following summer I went back to Davis for my second Modeling Workshop and the next school year I did better (and so did my students). By year 3, I finally felt like I knew what I was doing. I became intensely curious about how and why modeling worked for my students. I read whatever I could get my hands on, but finally decided that if I was going to figure modeling out, I’d have to be systematic about studying it. I needed someone to guide my studies, and since I had met David Hestenes while I was at UC Davis and he encouraged me to look into a program in physics education research, I contacted him and asked if I could be his graduate student. He agreed.

Although I loved teaching at Loretto High School for Girls in Sacramento, ten years ago I moved to Phoenix, took the job of designing the mathematics and science program for the new Jewish high school (a physics first integrated science and mathematics curriculum), and began my graduate studies at ASU. My research interest was in the integration of physics and mathematics, the physics first sequence of instruction, and the ways in which student discourse shapes thinking and reasoning in physics. I completed the Physics Department’s Master of Natural Science (MNS) degree program in 2004, along the way engaging in the first of many classroom research projects in collaboration with three other teachers. We designed and tested a modeling instruction unit in special relativity. During this period I also began teaching the Leadership Workshop course and coordinating the action research component of the MNS program. Over the years I have mentored over 40 teacher action researchers through their required MNS research experience. In fact it was during a Leadership Workshop meeting one day I heard that a handful of teachers in the Advanced Modeling course who were concerned about the future of modeling instruction, had invented AMTA the night before over a pitcher of beer (or 2). I immediately took out my checkbook and wrote Patrick Daisley (another UC Davis modeling classmate, who still serves AMTA as treasurer) a check for $25 to become one of the charter members of the organization.

In 2007, under the guidance of David Hestenes, I earned my PhD in Physics Education Research from ASU. My research was a study of whiteboard mediated cognition in four different modeling classrooms. After doing a year of postdoctoral research on embodied cognition in science education for ASU’s Arts, Media and Engineering program I took a faculty position in one of ASU’s colleges of education (we had 3 of them at the time) teaching elementary science methods. I secured funding for the Modeling Institute—a middle school STEM Modeling MNS degree program. Last summer I gave an invited talk and a demonstration of modeling instruction in Beijing. (They loved it. Chinese teachers want to learn modeling instruction.) In the fall I started writing grants in earnest to obtain funds to help scale AMTA up. To date I have written four grants. None have been awarded yet—I think perhaps the NSF reviewers are having a hard time wrapping their brains around a grassroots organization of this type. This spring I offered my services to the AMTA executive board as executive officer. When they took me up on it, I resigned my faculty position at ASU and accepted a part-time research position so that I could devote as much time as possible to helping AMTA “go big”. (I am fortunate to have the support of a loving husband who tells me I should do what makes me happy.) My AMTA position will not be salaried until I can land us some external funding.

Pedagogically, I approach teaching via modeling theory, and cognitively I am particularly interested in the phenomenon of distributed cognition and how a situated group learning experience ultimately distills into individual student understanding. I am also convinced that mathematics and science instruction can and should be integrated. I undertook this with good results for three years at the Jewish high school, and I built this curriculum design into the NSF-funded master’s degree program for middle school teachers. I hope that my work will enable modeling instruction to become self-sustaining and I would like contribute to large-scale curriculum integration in mathematics and science. At the very least, I hope that by having a foot in both the mathematics education and physics education camps, I can foster a dialogue and an ongoing relationship between the two communities that ultimately enriches both.

This is the most logical, realistic and honest article about teaching at school and becoming a Physics teacher in the USA that I have read in a long time.

The one statement that focuses like a laser on the reason why US students’ performance in STEM is dropping like the Niagara falls is … “I am also convinced that mathematics and science instruction can and should be integrated.” Insisting that students must choose any subject on their own (or, with partial / uneducated help of parents), is like letting a toddler learning to walk, during rush hours, on I-95. Unless science is integrated, everybody, students, teachers, schools, states and the nation are all going to go backwards. It is time experienced teachers like Colleen were appointed to decision-making positions in STEM education. Most others these days are just talking all air with no force.

Building on the need to integrate math and science instruction, here is a quote by Dave Hestenes that I like.

Notes for a Modeling Theory of Science, Cognition and Instruction,

by David Hestenes.

Proceedings of the 2006 GIREP conference: Modelling in Physics and Physics Education.

(in pdf at http://modeling.asu.edu/R&E/Research.html )

[page 27]

I am not alone in my opinion on the intimate relation between physics and mathematics. Here is a brief extract from a long diatribe On Teaching Mathematics by the distinguished Russian mathematician V. I. Arnold [32]:

“Mathematics is a part of physics. Physics is an experimental science, a part of natural science. Mathematics is the part of physics where experiments are cheap. . . . In the middle of the 20th century it was attempted to divide physics and mathematics. The consequences turned out to be catastrophic. Whole generations of mathematicians grew up without knowing half of their science and, of course in total ignorance of other sciences.”

Arnold is deliberately provocative but not flippant. He raises a very important educational issue that deserves mention quite apart from the deep connection to cognitive science that most concerns us here.

There is abundant evidence to support Arnold’s claim. For example, up until World War II physics was a required minor for mathematics majors in US universities. Since it was dropped, the mathematics curriculum has become increasingly irrelevant to physics majors, and physics departments provide most of the mathematics their students need. At the same time, mathematicians have contributed less and less to physics, with some exceptions like the Russian tradition that Arnold comes from, which has sustained a connection to physics.

But the most serious consequence of the divorce of mathematics from physics is the fact that, in the U.S. at least, most high school math teachers have little insight into relations of math they teach to science in general and physics in particular. Here is a bit of data to support my contention: We administered the Force Concept Inventory to a cohort of some 20 experienced high school math teachers. The profile of scores was the same as the pitiful profile for traditional instruction in Fig. 10, with the highest score at the Newtonian threshold of 60%. Half the teachers missed basic questions about relating data on motion to concepts of velocity and acceleration. This chasm between math and science, now fully ensconced in the teachers, may be the single most serious barrier to significant secondary science education reform.