Tag Archives: education

Going Beyond the Physics Textbook

I have the honor of being invited by Discovery Education to attend their second “Beyond the Textbook” forum to be held this Wednesday and Thursday at their headquarters in Silver Spring, Maryland. The event is spearheaded by Steve Dembo and, in exchange for travel expenses, he gets to pick my brain about digital textbooks, resources, and curriculum. There will be 18 other outstanding educators as well, including my edu-heroes  Christopher DanielsonMichael DoyleKarl Fisch, and Tom Woodward.

In preparation for the event, I’m updating/remixing an old blog post I wrote called “My Vision for a Physics iBook” ….

~~~~~~

I keep thinking about what a physics iBook would look like. Not a book for consumption, as with a traditional text, but rather a book to enable exploration. So what would a student see when they first opened such a book?

It’s blank.

No content. No classical references like Feynman’s Lectures on Physics. No integration with Khan Academy’s video library.  Nothing.

Why?

Students should be learning to do science, not simply learning about science. They should be making observations, posing questions, conducting experiments, finding patterns, analyzing data, and sharing their conclusions.

In this sense, the iBook would function more like an electronic lab notebook. As with curricula like Modeling Instruction and ISLE, students would create the physics content from their own investigations and evidence, rather than deferring to authority.

Actually, the iBook wouldn’t be completely blank. While it would initially be empty of content, it would be chock-full of tools to help students collect and analyze experimental data. Software like Tracker for video analysis, VPython and GlowScript for computation and visualization, LoggerPro for graphing and electronic data collection, along with PhET simulations and Direct Measurement Physics Videos for conducting virtual experiments.

In the realm of traditional physics textbooks, only a few make it a priority to incorporate experiments into their storylines. Three that come to mind are:

The Manga Guide to Physics

Picture2

Understanding Physics

FIGURE P-2  Electronic temperature sensors reveal that if equal amounts of hot and cold water mix the final temperature is the average of the initial temperatures.

and PSSC Physics.

Eugenia Etkina‘s upcoming College Physics text gets a step closer to my iBook vision. The text incorporates her work with video experiments in her ISLE and Physics Union Mathematics curriculula. In the text, there are QR codes which link to videos of the experiments to be analyzed.

For example, here’s a video of a momentum experiment, followed by the corresponding section of the text.

etkina

But, as you can see, the text does the analysis for the student. In my opinion, this would make a good reference only after the student has completed a similar activity on their own. Fortunately, her text also comes with a workbook that asks students to do this sort of scientific reasoning on their own:

activephysics

Also taking the “experiments first” approach is Live Photo Physics Interactive Video Vignettes, a collaborative project by well-known physics education researchers Robert Teese, Priscilla Laws, and David Jackson. During a vignette, students are asked to make predictions and do video analysis on-the-fly. Here’s a preview:

Science is never done in isolation, however, so the iBook would come equipped with tools for sharing data, content, photos, videos, and resources among students and between teacher-student.

For me, going beyond the textbook means giving students a toolbox rather than an instruction manual.

What’s your vision for the future of textbooks?

You can follow along with us at the Beyond the Textbook forum this week by searching for the Twitter hashtag #BeyondTextbooks.

Bonus: 5 reasons why iPads won’t replace textbooks in science class.

PhotoGrid_1363733048460

My TEDxNYED Session: Learning Science by Doing Science

Many thanks to the TEDxNYED 2012 crew, especially True Life Media, Basil Kolani, Karen Blumberg, and Matthew Moran for an awesome event. Be sure to check out the rest of the TEDxNYED 2012 talks.

Learn more about Modeling Instruction in Science.

My Vision for a Physics iBook

UPDATE 1/22/2012: Now with links and Apple’s iBook video!

Warning: This post is a brain dump of all thoughts and conversations I’ve been having about next generation textbooks since Apple’s iBook textbook announcement. Sorry this isn’t polished.

I keep thinking about what a physics iBook would look like. Not a book for consumption (like a traditional text) but rather a book to enable exploration. More like a text-journal-workbook-lab notebook combo, where students would create content from investigations (also pooling created content/data from classmates, etc) and also have reference text for afterwards in the same vein as the Minds-On-Physics text, the first edition of M&I, and the Physics by Inquiry texts.

Stuck on a problem? An intelligent tutor would be able to re-direct you back to a video or animation or even your own data from an exploration where you initially encountered the concept.

There would be these components:

It’d be like an electronic version of the PSSC/Modeling/ISLE /PUM curricula on steroids. And I see this more as the teacher having these tools to deploy to the students, rather than the students following a linear path through text and activities. The class actually builds the text together, and each year the text is different.

The capabilities and content for this iBook already exist. No one has put them together in one package yet. I think it could even be web/cloud-based and platform independent if done with the proper tools.

What am I missing? What’s your vision?

You Khan’t Ignore How Students Learn

From Harvard EdCast’s “The Celebrity Math Tutor” (transcript below)

Buffy Cushman-Patz: What efforts do you take to ensure that your pedagogy is consistent with what education research shows about how people learn, especially how people learn math and science?

Sal Khan: The reality is…when we’re going through the first pass of the videos there was very little effort; it really was just me doing my best shot and seeing what I would have liked to have and that my cousins and other people on YouTube seem to be benefiting from. Now we are getting pretty deep on our own analytics on our website. In terms of the broader research, I think there are people who come up with rules of thumb based on some study or another, and I’m not saying the study’s not valid, but I’m saying sometimes it’s not necessarily…you can’t come up with these rules the way all teaching has to be done like this. I think, for example, those research – you know there’s this one research study that’s been going around, kind of saying that… it first kind of hints at videos – maybe people can’t learn from videos and that if you do make a video you always have to address the misconceptions first and if you don’t address the misconceptions first, people are always going to conform whatever you say into their preexisting misconceptions. I don’t think that research is wrong; I think that is often the case. I don’t think it has to be religiously applied – that you have to, because in some areas people might not have even thought about something, they might not have misconceptions or maybe you explain once and you reemphasize that this goes against misconception A, B, C, or D. So I don’t think there’s one formula there. And I think frankly, the best way to do it is you put stuff out there and you see how people react to it; and we have exercises on our site too, so we see whether they’re able to see how they react to it anecdotally. You see, the comments they put, they’ll ask questions based on… Every time I put a YouTube video up, I look at the comments — at least the first 20, 30, 40 comments that go up — and I can normally see a theme: that look, a lot of people kind of got the wrong idea here. Or maybe some people did, and then I’ll usually make another video saying “Hey, look after the last video, I read some the comments and a lot of y’all are saying this is not what we’re talking about it’s completely different.” So that means I am attacking the misconceptions. But I think if you had a formula in place, and you do that every time, I think once again the learner will say, “This guy’s not thinking through it and he’s not teaching us his sensibilities, his thought processes. He’s just trying to meet some formula on what apparently is good video practice. “And I’ll go the other way: you can dot all the “i”s and cross all the “t”s on some research-based idea about how a video should be made, but if your voice is condescending, if you’re not thinking things through, if it’s a scripted lecture, I can guarantee you it’s not going to appeal with students. And I think the other mistake people… I’d like some research to be done with this, and it really goes against the grain against what most people assume is what even video is about is, that all the feedback that we’ve gotten is not seeing the face is, maybe, one of the most compelling things about it is hearing the voice, because the face is hugely distracting. And so long answer to a short question. I think it’s nice to look at some of the research, but I don’t think we would… and I think in general, people would be doing a disservice if they trump what one research study does and there’s a million variables there: who was the instructor, what were they teaching, what was the form factor, how did they use to produce it? You’d be doing yourself a disservice if you just take the apparent conclusions from a research study and try to blanket them onto what is really more of an art. It’s like saying that there’s a research study on what makes a nice painting and always making your painting according to that research study that would obviously be a mistake.

It’s unfortunate that “The Teacher to the World” was only able to mention one study about how students learn. A study which he then dismisses. And since he doesn’t describe any other efforts to be consistent with pedagogy, his real answer to Buffy’s question is: “I don’t.”

Let’s look at Khan’s response in more detail:

“Now we are getting pretty deep on our own analytics on our website.”

I don’t see how statistics about how many times students have watched/rewound each video or how many times students miss a question in the exercises tells us anything about how effective his videos are. I don’t see how he could use that data to refine his future videos in the same way a teacher would reflect and refine lessons from year-to-year.

“…you can’t come up with these rules the way, all teaching has to be done like this.” 

He’s right. There is no one rule, no one formula, for teaching. The Physics Education Research User Guide website contains 51 different research-based teaching methods. The website can filter these methods by type, instructional setting, course level, coverage, topic, instructor effort, etc. And while 51 different methods may seem overwhelming, they all have one important characteristic in common: interactive engagement (IE).

So what is interactive engagement? Hake defines IE as methods “designed at least in part to promote conceptual understanding through interactive engagement of students in heads-on (always) and hands-on (usually) activities which yield immediate feedback through discussion with peers and/or instructors.”

A video lecture is not interactive engagement.

“…maybe you explain once and you reemphasize that this goes against misconception A, B, C, or D.”

Khan (along with most of the general public, in my opinion) has this naive notion that teaching is really just explaining. And that the way to be a better teacher is to improve your explanations. Not so! Teaching is really about creating experiences that allow students to construct meaning.

“And I think frankly, the best way to do it is you put stuff out there and you see how people react to it…”

This is flawed. People’s reactions are not indicators of effectiveness. Pre/post testing is needed to indicate effectiveness. Ah, but perhaps there is a relationship between people’s reaction and effectiveness? The research indicates otherwise. In the very research study that Khan says is valid (and then dismisses), student actually did better after watching the videos they described as confusing, and made no gains after watching the videos they described as easy to understand. Additional research indicates that when an instructor switches over to IE methods, course evaluations from students tend to be more negative than the previous year, despite gains from students going up. (Don’t worry, a few years after the switch to IE, the evaluations go back to pre-IE levels.)

You see, the comments they put, they’ll ask questions based on… Every time I put a YouTube video up, I look at the comments — at least the first 20, 30, 40 comments that go up — and I can normally see a theme: that look, a lot of people kind of got the wrong idea here. Or maybe some people did, and then I’ll usually make another video saying “Hey, look after the last video, I read some the comments and a lot of y’all are saying this is not what we’re talking about it’s completely different.” So that means I am attacking the misconceptions.”

Again, it’s not about crafting better explanations. It’s about helping students wrestle with their conceptions and guiding them.

“But I think if you had a formula in place, and you do that every time, I think once again the learner will say, “This guy’s not thinking through it and he’s not teaching us his sensibilities, his thought processes. He’s just trying to meet some formula on what apparently is good video practice.”

Another naive notion of teaching. The goal is not for the teacher to teach the students his sensibilities and thought processes. The goal is for the teacher to have the students use their sensibilities and thought processes to reason through the concepts. Empower the student to think for themselves, rather than consuming the teacher’s ideas.

“And I’ll go the other way: you can dot all the “i”s and cross all the “t”s on some research-based idea about how a video should be made, but if your voice is condescending, if you’re not thinking things through, if it’s a scripted lecture, I can guarantee you it’s not going to appeal with students.”

Yet there are plenty of people who prefer to watch Walter Lewin’s highly-scripted performance lectures to Khan’s off-the-cuff style lectures. (Though remember that preference has nothing to do with effectiveness. In fact, Lewin’s showstopping lectures were no more effective than the mundane professors before him.)

“…and I think in general, people would be doing a disservice if they trump what one research study does and there’s a million variables there: who was the instructor, what were they teaching, what was the form factor, how did they use to produce it? You’d be doing yourself a disservice if you just take the apparent conclusions from a research study and try to blanket them onto what is really more of an art. It’s like saying that there’s a research study on what makes a nice painting and always making your painting according to that research study that would obviously be a mistake.”

Here is the most damning piece of evidence, from Hake’s famous six thousand student study:

The six thousand students in Hake’s study were not in a single class. They were in 62 different courses, from high school to university, taught by a variety of instructors with different personalities and expertise. And yet ALL the IE courses made greater gains (the slope of the graph — between 0.34 and 0.69) than the traditionally taught courses (average 0.23). It should also be noted that the green IE courses above were NOT identical and did not follow some magic teaching formula. They only had to conform to the Hake’s broad definition of IE given above. So you see, those “million variables” that Khan mentions don’t matter. METHOD trumps all those other variables.

But surely teacher expertise matters, right?

Yes and no.

NO: As seen in Hake’s study above, when comparing IE teachers to traditional teachers, expertise doesn’t matter because IE always trumps traditional.

NO: Note the small spread of the red-colored traditional classes shown above, which hover around an average gain of 0.23. Traditional methods produce very similar results no matter the level of the course or instructor.

YES: When comparing IE teachers to other IE teachers, expertise does matter. IE gains ranged from 0.34 and 0.69. As instructors get more comfortable using IE methods, gain increases. See, for example, this graph about the effectiveness of modeling instruction:

Expert modelers had higher gains than novice modelers.

But surely there is a place for lectures, right?

Yes, BUT students must be “primed” for the lecture. According to the PER User’s Guide FAQ:

It is possible for students to learn from a lecture if they are prepared to engage with it.  For example, Schwartz et al. found that if students work to solve a problem on their own before hearing a lecture with the correct explanation, they learn more from the lecture.  (For a short summary of this article aimed at physics instructors, see these posts – part 1 and part 2 – on the sciencegeekgirl blog.) Schwartz and Bransford argue that lectures can be effective “when students enter a learning situation with a wealth of background knowledge and a clear sense of the problems for which they seek solutions.”

For more information about  how people learn, I highly recommend two great FREE online books from the National Academies Press:

If you are a physics teacher, be sure to get these discipline specific books about how students learn physics:

And just in case you think I’m an armchair critic with nothing to contribute, I want you to know I’ve opened up my classroom to the whole world on my Noschese 180 blog, where I’ve been sharing a picture and a reflection from each school day. It’s not quite the Noschese Academy, but I hope you find it worth reading and commenting, as we journey through teaching together.

A Demonstration of the Ineffectiveness of Traditional Instruction

First, answer this question:

A student in a lab holds a brick of weight in her outstretched horizontal palm and lifts the brick vertically upward at a constant speed. The force of the student’s hand on the brick is:
     A. constant in time and equal to zero.
     B. constant in time, greater than zero, but less than W.
     C. constant in time and equal to W.
     D. constant in time and greater than W.
     E. decreasing in time but always greater than W.

Now watch this video. Feel free to pause, rewind, and rewatch as needed.


Finally, answer this question again:

A student in a lab holds a brick of weight in her outstretched horizontal palm and lifts the brick vertically upward at a constant speed. The force of the student’s hand on the brick is:
     A. constant in time and equal to zero.
     B. constant in time, greater than zero, but less than W.
     C. constant in time and equal to W.
     D. constant in time and greater than W.
     E. decreasing in time but always greater than W.

Believe it or not, the concept needed to reach the correct answer is given in Khan’s video. Highlight below to reveal:
C. constant in time and W. Why? Since the brick moves at a constant velocity, the forces on the brick (you and gravity) must be balanced.

Physics Teaching 2.Uh-Oh

My first talk! Given at the STANYS 2011 Physics Breakfast on November 8th, 2011 in Rochester, New York


Links to resources mentioned in the talk:

A huge thank you to Gene Gordon for inviting me to speak at the breakfast. It was great to share my passions and meet my virtual colleagues face-to-face!

I’d love any feedback you have, positive and negative. Thanks!

Khan’s School of the Future

From Hacked Education:

Khan Academy announced this morning that it has raised $5 million from the O’Sullivan Foundation (a foundation created by Irish engineer and investor Sean O’Sullivan). The money is earmarked for several initiatives: expanding the Khan Academy faculty, creating a content management system so that others can use the program’s learning analytics system, and building an actual brick-and-mortar school, beginning with a summer camp program.

“Teachers don’t scale,” I remember Sal Khan saying to me when I interviewed him last year. What can scale, he argues, is the infrastructure for content delivery. And that means you just need a handful of good lecturers’ record their lessons; the Internet will take care of the rest.

But online instruction clearly isn’t enough, and as “blended learning” becomes the latest buzzword — that is, a blend of offline and computer-mediated/online instruction — Khan Academy is now eyeing building its own school. The money from the O’Sullivan Foundation will go towards developing a “testbed for physical programs and K-12 curricula,” including an actual physical Khan Academy school.

What might Khan’s “school of the future” look like? 

In his video interview with GOOD Magazine, Khan said:

As far as the future of learning is concerned, the school is going to be one or two really big classrooms, and because everyone can work at their own pace, we are going to see the best be a higher bar and you’re going to see everyone having access to that and they can move up with the best.

One or two large classrooms where everyone works at their own pace? That sounds a lot like Rick Ogston’s Carpe Diem school:


Matt Lander reports the following from his visit to Carpe Diem:

Carpe Diem is a hybrid model school, rotating kids between self-paced instruction on the computer and classroom instruction. Their building is laid out with one large computer lab, with classroom space in the back. They had 240 students working on computers when I walked in, and you could have heard a pin drop.

Carpe Diem has successfully substituted technology for labor. With seven grade levels and 240 students they have only 1 math teacher and one aide who focuses on math. [emphasis mine]

Carpe Diem also  touts they get great results with less per pupil spending. How? Well, as implied above, they have fewer teachers and staff. Also, take a look at the Carpe Diem Parent/Student handbook and you can see why: they have NO nurse and NO food service. Other ways I bet they save on money, compared to a regular public school: there is very little equipment to buy (aside from computers and furniture) — no art supplies, no science labs, no physical education equipment, etc. It seems Carpe Diem also lack special programs: no special education, no athletics, and no performing arts. We also have the problem of using standardized test scores to measure success. I think what is more important is: How many are successful in college? How many stay on past freshman year?

Carpe Diem is really an online school that also has a few brick and mortar campuses. The curriculum they use for both their virtual and physical schools is called e2020. From e2020′s website:

e2020 then designs each lesson with student-centered objectives that maximize the use of Bloom’s Taxonomy of Learning Domains. Lessons are designed in order to provide the student with an optimal learning experience that is unique for each course.  Students progress through the lesson with a series of activities such as, direct instruction videos by certified teachers; vocabulary instruction: interactive lab simulations; journals and essay writing; 21st century skills; activities that include projects, design proposals, case studies, on-line content reading; and homework/practice before being formatively assessed with a quiz. Topic test and cumulative exam reviews are provided to reinforce mastery prior to students’ taking summative assessments.

So the kids work through the modules at their cubicles and can seek out extra help at “workshops.” You can test some of the modules if you register here. For the science modules I tested, there are periodic multiple choice assessments. The in-module labs are all simulations — no manipulation on any physical equipment. It seems kids can pass the state exams based on their module work, but I wager they will be severely ill equipped for college or the real world, especially in STEM fields.

My issues with this blended/hybrid model of school:

  • The conception of learning seems to be isolated, rather than group.
  • It appears to teach/assess mostly low-order practices.
  • I can’t see how physics and chemistry could be done well, and thus contribute to  developing the STEM workforce.
  • How can ONE teacher be versed in pedagogically appropriate ways of helping students across SEVEN grade levels?

Blended learning schools like Carpe Diem pale  in comparison to what schools like High Tech High are doing:

Where would you rather go to school?